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The problem of coherent vortex and zonal jet formation in a system of oceanic or planetary nonlinear Rossby
waves is considered from the point of view of the late time steady state achieved by free decay of a given initial
state. Statistical equilibrium equations respecting all conservation laws are constructed for a broad class of
models, generalizing those derived previously for two-dimensional inviscid Euler flow. Jetlike solutions are
ubiquitous, with large coherent vortices existing only when there is a background flow whose velocity locally

cancels the beta effect.
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The formation of jets (localized, elongated energetic
flows) in rotating two-dimensional (2D) flow, such as plan-
etary atmospheres and oceans, is a ubiquitous phenomenon.
Although jetlike structures are often dictated by external
forcing, or by boundary constraints, zonal (east-west) jets
may also form via unforced evolution of essentially isotropic
initial conditions in large systems where boundaries are un-
important [1]—the remarkable band structure of Jupiter is a
famous example. Although the planetary rotation axis clearly
distinguishes the zonal and meridional directions, its effect
on the dynamics is rather subtle, and there is no simple ar-
gument why this should lead to highly elongated structures.
In particular, conserved quantities like energy E and enstro-
phy ,, as well as nonlinear advection effects, remain iso-
tropic.

Recently, a new, highly anistropic adiabatic invariant B,
special to systems of interacting Rossby waves [2], has been
argued to provide the required dynamical mechanism [3]. In
particular, for the ever larger scale flows generated by the
well-known inverse cascade of energy, B increases strongly
with scale if the energy spectrum remains isotropic. Conser-
vation of B concentrates the spectrum in the meridional di-
rection, leading to zonally concentrated flows. Well defined
Rossby waves exist only at midlatitudes, so this offers only a
partial explanation since jet formation is also seen in near-
equatorial flows.

In this work a very general, complementary approach is
considered. Rather than trying to follow the very compli-
cated turbulent dynamics from some given initial condition,
one seeks to understand only the range of possible long-time
steady states produced by free decay of such flows. In par-
ticular, equilibrium steady states are considered, which are
completely specified by the values of all the conserved quan-
tities. In standard three-dimensional (3D) thermodynamic
systems, often only energy and particle number are con-
served. In the 2D flows of interest, there are an infinite num-
ber, providing a far greater range of interesting equilibria
with nontrivial spatial structure [4—11].

In the following, an exact nonlinear PDE that determines
the equilibrium flows is derived, and solved in various limits.
It will be shown, quite generally, that the latitude dependence
of the Coriolis force (the “beta effect”) destabilizes large
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coherent vortex structures: the only stable equilibrium flows
are those that are zonally translation invariant, i.e., jetlike.
Only in a background flow that cancels or locally overturns
the beta effect are coherent vortices stable. Interestingly, con-
servation of B, which requires a beta effect, also fails in this
limit, and therefore does not hinder the formation of such
structures. The equilibrium arguments are independent of all
dynamical considerations, and hence, do not depend on the
existence of B, but the fact that they are so consistent sug-
gests a relation. This will be a subject of future investigation.

For generality, consider a class of equations (examples to
follow) which may be written in the form

90+v-VQ=0. (1)

The incompressible velocity field v=V X = (d,,~d, ).
The stream function ¢ is assumed related to the convectively
conserved “charge field” Q through an energy functional

H[QI:
Y(r) = 5H/5Q(r). ()

An example is the Charney-Hasagawa-Mima (CHM) equa-
tion in which Q= w+k,23</f+f, where w=VXv=dv,-dv,
=-V%) is the vorticity. The Coriolis function f
=2Q;sin[6(y)], where 6(y) is the latitude, and
=21/(24 h) is the rotation frequency of the Earth, and coor-
dinates are chosen so that the x-axis points eastward and the
y-axis northward. In this case

=%f‘izrjdzr'[Q(r)—f(r)]g(r,r’)[Q(r’)—f(r’)],
3)

in which g is the Green function of the operator —V2+k%
satisfying free slip and/or periodic boundary conditions.
In the beta-plane approximation, f=fy+pBy, where
fo=2Qsin(6y), B;=2(Qg/Rg)cos(y), where Ry is Earth’s
radius, and 6, is a reference latitude. The Rossby radius of
deformation is Ry=1/kz=c/f, where c~3 m/s is the speed
of internal gravity waves. In principle kz=kg(y), but usually
one sets kg=1/R(0). Only B, then produces anisotropy. The
free space Green function is the modified Bessel function,
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g(r,r")=K(kg|r—r’|)/2m, and linearizing (1) produces the
usual Rossby wave dispersion relation w=-g8k,/ (ko + k).
The CHM equation (reducing to the Euler equation for
kr=0) is an approximation to the shallow water equations in
which propagating gravity waves are neglected. The surface
height is then proportional to ¢, and adiabatically follows the
flow. This equation also describes drift wave plasmas, in the
2D plane perpendicular to an applied magnetic field, where
is the electrostatic potential and w the charge density.

For later purposes, it is useful to define the Legendre
transform of H,

LIyl=H[Q]- J d*ry(r)Q(r), (4)

in which (2) is used to substitute ¢ for Q. The relation may
be inverted via the implied identity

O(r) =— 8L/ 5y(r). (5)

From the example (3) one obtains the simple result
1 1
E=—fd2r{5|v¢|2+ ket +f¢}7 (6)

the first two terms of which may be recognized as the kinetic
and potential energies.

Since v- V=0, it follows that H is conserved [12]. With
periodic or free slip boundary conditions, it follows also
from (1) that Q,=/d’*h[Q(r)] is conserved for any one-
dimensional (ID) function (o), conveniently summarized
by

glo)= f d*rédlo-Q(r)], (7)

conserved for any o. One recovers ),=[doh(o)g(o). Cer-
tain “momentum functionals”

P=fd2r>\(r)Q(r) (8)

are also conserved if H has appropriate translation symme-
tries [13]. For rotational symmetry, the conserved (vertical
component of) angular momentum corresponds to )x:%rz.
For translation symmetry along direction 1, the conserved
linear momentum corresponds to A=IXr.

For the CHM equation in the open beta-plane there is an

additional adiabatically conserved quantity, which to qua-
dratic order in ¢ takes the Fourier space form [2]

1 [ dk ~ 4 A
B=1 J 0010000, ©)

in which Q(k):(k2+k1%) fﬁ(k) is the Fourier transform of
O-f= (—V2+k12e) . The key properties are [3] (1) b(K)
=O[(kg/k)®] decays rapidly for k/kg>1, and (2) for
klkp<<1, l;(k):(’)(l) for k-space directions m/3< 0
<27/3 (but vanishing for || — m/2) while b(k)=0O(kg/k)
otherwise. Property (1) implies that B, even more so than 7,
is a large scale quantity, insensitive to small scale variations
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in Q. Property (2) then implies that the inverse cascade must

focus the small k part of the spectrum close to |6]=1/2,
leading (through the curl relation with v) to large scale zonal
flows [3].

When kz— 0 or B,— 0, the adiabatic conditions fail, and
B is no longer conserved [2], so this form should be used
only at midlatitudes. Since B is not exactly conserved, it will
not be included explicitly in the equilibrium calculation, but
its consistency with various proposed equilibrium states will
be confirmed at the end.

All statistical equilibrium information is contained in the
free energy

F=— é IH{J DQAg[Q]e‘B(H[Q]_D‘OP[Q])} , (10)

in which B=1/T is the inverse temperature, « is a Lagrange
multiplier for P, [DQ is a functional integral over all pos-
sible configurations of Q, and A, [Q]=II,8{g(0)-g,[O]}
represents the infinite product of delta functions required to
impose the chosen values g(o) of all the conserved integrals
g,L0] represented by the right hand side of (7). If
Q(r)—Q; is discretized on a grid with microscopic
spacing a, then Liouville’s theorem specifies the measure
IDQ=lim,_,I1,[~.dQ; 5]

It transpires that F may be computed exactly under the
very general assumption that H and P are insensitive to very
small scale fluctuations in Q [4,5]. Due to fine-scale mixing,
the equilibrium Q will fluctuate wildly from grid point to
grid point, but its average Q(r) over a small area [>>a®
(with [—0 also at the end), will vary smoothly. If ny(r, o) is
the equilibrium probability density for finding a parcel
of fluid with charge o in the area [*> about r. Then
Qo(r)=fodony(r,o). It is assumed that H is smooth on
scale I, and hence, H[Q]=H[Qy]. In (3) this is provided by
the smoothness of g: although it diverges at the origin, the
logarithmic singularity is sufficiently weak that this assump-
tion remains valid [5]. By integrating out the small-scale
fluctuations, which may be treated as independent from grid
point to grid point, one obtains an entropy contribution,

S= é J d*rdon(r,o)In[ny(r,0)], (11)

in terms of which the free energy is Flny]l=H[Qy]-TS[nol.
One now observes that if 7S is to remain finite as a—0 (so
that nontrivial equilibria are obtained in which entropy and
energy compete), one must adopt the scaling T=Td?,
B=pB/a? with fixed B=1/T.

To self consistently determine ny(r, o), Lagrange multi-
pliers are introduced via the Gibbs free energy

G=F- J d*ru(o)ny(r, o), (12)

in which (o) is used to tune g(o). One may now freely
extremalize G over all n, constrained only by the normaliza-
tion [dongy(r,o)=1, to obtain
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n(r, o) = e PV (¥o-a) pli(@)-o(Wo-a)] (13)

where Wo(r)= §H/ 5Q,(r) is the equilibrium stream function,
a(r)=ay\(r), and

W(r) = % ln{J daeﬁ[“(”)_”ﬂ}.
B

Substituting (13) back into (12) and using (4), finally deter-
mines G as a functional of W:

(14)

GlWol=L[¥,] - f d*rw(¥y - a). (15)

The latter is finally determined by the (minimum for > 0,
maximum for 7< 0) condition

= OLI8¥(r) = Qy(r) = F[W(r) - a(r)], (16)

where F(7)=—d,W(7). Since W(7) is convex, F(7) is
monotonic. Using (5) and (6), the left hand side is
Qo=(-V?+kz)Wo+f, and (16) represents a nonlinear
PDE for W, The conserved quantities are set by the
derivatives P=—dG/day=[d*rF(Vy—a), g(o)=-8G/u(o)
=[d®’rny(r,0).

Substituting (16) into (1), one finds Q(r,t):QO(r+ia0t)
or Qu(r, 0+ ayt), depending on the choice of . Fixed mo-
mentum solutions are not in general static, but require a
background flow with velocity ¢ along the symmetry direc-
tion.

Equations (15) and (16) are the fundamental results of this
paper, providing a complete description of the fluid equilibria
for a rather general class of problems. They are equivalent, in
the appropriate limits, to previously derived forms for the
inviscid Euler equation [4-6], and the quasigeostrophic
equations [7,10,11]. Ultimately one is interested in coherent
vortex formation, where Q is large in some compact region,
and is much smaller outside of it. One sees from (3) that
these are high energy configurations, and hence, correspond
to T7<0 [5].

For tractable applications “finite level systems” are
useful: let g(0)==;_,A,8(0—0), in which A is the total
area occupied by charge o;. One correspondingly requires
only a finite number of Lagrange multipliers a: P

=Ef=le'3/‘k5((r— o), and W(7) becomes (the log of) a discrete

sum. One obtains 71y(r,0)==]_ p(r)So—0y), Qp(r)
=37 0pi(r), where
Bl Vo(r-a()]}
pil(r) = 5 : (17)

S BlurolVor-a(r)l}
=1

has spatial integral A;, and is therefore the equilibrium num-
ber density for charge oy [14].

To illustrate properties of the solutions, consider the two
level system, o0,=0,0y, in the beta-plane where a=qy:
pr=(ePlooWo@-1l )=l js the Fermi function, where
MU= — Mo s the chemical potential difference (this model,
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in a similar context, was also analyzed in detail in Ref. [11]).
Define the temperature scale T,=—03/4ks><<0, and let
1=T/Ty, po=—(0gWo—m)/2Ty, qo=2Q¢/00o=1, p=(p.p,)
=kgr. In terms of these scaled variables, the free energy and
equilibrium equation take the form

2
9 > |1 2
=—— | dp| |V —hpy+ Vipg) + € |,
G Py p[zl oPol” = hpo + V(po) + €
qo=(=V2+ 1)po— h =tanh(p/1), (18)
where  h(p)=ho+gop,,  with  hy=1-2fy/ay+ul2T,,

g0=—2(a0k%+,8f)/ ookg. The py-independent €)(p) term is
unimportant. The potential V(p0)=%p§—?ln[2 cosh(py/7)] is
an even function with a single minimum at p,=0 for 7> 1,
and symmetric double minima at ipgq(?) satisfying
pgq:tanh(pgq/ ?):ng for 7<<1.

Equation (18) is a standard continuum model of a binary
fluid in a gravitational field g,, composed of a mixture of
heavy (go=1, Qy=0y) and light (go=—1, Qy=0) particles.
The |Vpo|* term is an attractive interaction between like par-
ticles which encourages phase separation at low tempera-
tures, 7<1. For h#0, V(p,)—hpo has a unique absolute
minimum py(7,h) =—pey(#,~h). For > 1, p,q is continuous
through ~=0, while for 7<<1 it jumps discontinuously be-
tween the heavy and light phases, ipgq(?). This analogy
makes it obvious that the stable equilibrium state must be
vertically stratified, with p, and g, increasing monotonically
(lighter phases floating on denser phases) in the direction of
go (southward if EfE B+ apks>0). For 7<1 there will be a
sharp interface centered at p,=—hy/g, (determined by w) of
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FIG. 1. (Color online) Scaled equilibrium charge density g.q(7)
(dashed line) and surface tension X(7) (solid line) vs reduced tem-
perature 7=T/T. For T—0, geq~1-2¢72, 3 ~1-777/12, while
for 7—1, geq=~ y3(1-1), 2 =[2(1 —11¥2. Inset: schematic coherent
vortex with asymptotic charge density o-izéa'o(l *(eq) inside and
outside. Arrows indicate the direction of fluid flow, essentially par-
allel to the interface.
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FIG. 2. Scaled interface profiles go(&,7), as a function of the
scaled normal coordinate &, for a sequence of reduced temperatures
from 7=0 [discontinuous step, go=sgn(£)] to 7=1 (completely flat,
qo=0) in steps of 0.1. For small 7, go=tanh(¢/7) (hence width
Ar=T7/kg), while py=sgn(£)(1-¢4), remaining continuous even
at 1=0. Near 1=1, gg=po=qeqtanh(£/2§,) with diverging width
&o=kpAr=1/2(1-1).

width Ap,~7 (see below) between the segregated phases.
The analogy generalizes easily to multiple charge levels,
which generate multicomponent fluid mixtures with different
combinations of separated and unseparated phases produced
as 7, u; are varied. However, g, is unchanged, and in equi-
librium the system must again be vertically stratified with
phase density ordered along g,. The argument also clearly
generalizes to nonlinear, but monotonic f(y): single signed
go(y) can only produce vertical stratification. This establishes
the claim that only equilibria with purely zonal flow are
stable in the presence of a beta effect, ,éf# 0, and is com-

pletely consistent with inverse cascade arguments based on
conservation of B.
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Only if Bf=0, hence ao=—,8f/k,2e=(9(10 cm/s) does the
gravity effect disappear. In a background flow moving at
speed «y, an effective isotropic f plane is restored. Consider
a large vortex region whose boundary is smooth on the scale
of its width Ar(T) (see below), viewed as a bubble of one
phase entrained by another [15] (see inset to Fig. 1). Coex-
istence requires T<T,, and h=0, i.e., u=0y(co—2f0)/2kp.
Near the interface, (18) is a 1D equation in the coordinate
&=p-n normal to the interface, with ggy,po— ing [hence,
charges U'i(T)=%O'0(1 ing)], deep on either side.

The free energy increment per unit length L of the inter-
face, AG/L=(2|T,|**/ 02 yields the scaled surface tension
3.(0)=/7.d&dgpo)*. In Fig. 1 numerical solutions for ng, p3
are plotted (and exact asymptotics described), while in Fig. 2
scaled interface profiles go(&) are plotted for several 7. The
true equilibrium solution is finally obtained by minimizing
the vortex perimeter L at fixed area A (set by the total charge
))), yielding, not surprisingly, a circular vortex. These argu-
ments again generalize to multiple charge levels, where one
could in principle have more than two phases in simulta-
neous equilibrium, with vortices composed of a central core
of one phase, ringed by one or more other phases.

Since B is no longer conserved in the f plane, there is no
dynamical barrier to the formation of isotropic structures,
again establishing consistency between arguments based on
the dynamics of the inverse cascade, and those based on
purely equilibrium thermodynamics. It appears likely that
conservation of B is a microscopic reflection of the analogy
to gravity-induced density stratification. Since vortices drift
across g, rather than accelerating along it, equilibration is
necessarily far less direct than in physical binary fluid sys-
tems, and B may be one of the mechanisms controlling this.
This idea will be investigated more carefully in future work.
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symmetric special case of the five level system, ¢,
=0,+1,+2. All of these are, in turn, very special cases of the
general theory presented here.
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pushed to higher and lower latitudes. Only lower (higher)
charged coherent vortices may then be truly stable. Underlying
topography may induce nonuniform zonal background flows
that enhance such extrema, serving as models of Jupiter’s
Great Red Spot (Refs. [10,11]). The extremum also “squeezes”
the entrained bubble, zonally elongating it, as observed on Ju-
piter.



